PAVEMENT DESIGN REPORT

March 24, 2025

Attention: Greg Vega, P.E.

Dibble

177 N. Church Ave Tucson, Arizona 85701 Greg.Vega@dibblecorp.com

(520) 495-4065

Subject: Pavement Design

Butterfield Elementary Fire Lane Improvements

3400 W. Massingale Rd.

Marana, Arizona

SAECO Project No. 29.25.2601, Revision 0

Smith & Annala Engineering Co. (SAECO) is providing this memorandum at the request of Mr. Greg Vega, P.E., in accordance with our proposal dated August 27, 2024 (SAECO Proposal Number PG29.24.122, Rev. 0). We understand a new hammerhead turnaround and ADA improvements are to be constructed to improve the existing fire lane to the east of Butterfield Elementary School.

SCOPE OF WORK

Our field investigation was performed on February 26, 2025, after notifying Arizona 811. Soil borings were extended using a Central Mine Equipment, Model CME-55 truck mounted drill-rig utilizing a 8-inch (OD) diameter hollow-stem auger operated by Southlands Engineering. The borings extended approximately to 5 feet below the current pavement surface. Driven samples were collected at 5 feet below ground surface in each boring, and bulk samples were collected from auger cuttings. Upon completion, the borings were backfilled with cuttings derived from auger advancement, and asphalt surfaces were repaired using cold-patch asphalt mix.

During the field investigation a representative from SAECO:

- Noted the current site conditions from cursory observations
- Sited the explorations in the field by estimating bearings and distances from site features shown on aerial photographs
- Directed the exploration subcontractor with respect to total depth of exploration and the type and depth of the sampling performed
- Visually classified the subsurface materials exposed during the advancement of the explorations in general accordance with ASTM D2487 (Visual Manual Procedure) with some modifications from SAECO

- Created a log of the explorations, including subsurface materials encountered, results of field testing performed, and a record of any samples collected
- Appropriately labeled and packaged the samples collected for transport to the SAECO laboratory

After completion of the field investigation, SAECO representatives:

- Performed laboratory testing on selected samples obtained from the exploratory borings. The details
 of the laboratory testing and the results are attached to this letter.
- Performed an analysis of the subgrade soils and prepared pavement section recommendations
- Provided geotechnical construction recommendations for the project

FINDINGS

Site Conditions

The project site is an asphalt surfaced fire lane located immediately to the east and south of the Butterfield Elementary School building. East of the fire lane is a fenced area containing grass fields and play equipment for the school. The fire lane is accessed through a gate to the south of the school building. The roadway is generally flat and sits slightly above the fields to the east. Site elevation is approximately 2,280 feet above mean sea level based on publicly available topographic data.

Pavement Condition

The pavement surface at the site appears to be in fair condition. It shows signs of aging including minor block cracking and some weathering/raveling.

Based on boring observations, the pavement section is composed of approximately 2 inches of asphalt supported on native soils.

Subgrade Soils

Subgrade soils encountered below the pavement generally consist of silty sand with trace amounts of gravel. The material is generally moist, brown to dark brown in color, is loose in relative density, and is non-plastic.

PAVEMENT RECOMMENDATIONS

Pavement was designed with reference to the following standards and documents:

- Arizona Department of Transportation (ADOT) Pavement Design Manual (2017)
- Pima County Roadway Design Manual (2014 with 2016 Update)
- AASHTO Design of Pavement Structures (1993)

A summary of the design parameters and recommended flexible pavement section are included in Appendix D of the report.

Traffic Loading

To account for the existing use as a fire lane and proposed occasional use of the turnaround by heavy trucks and equipment, we have assumed for conservatism that design traffic loading will not exceed 100,000 ESALs.

Reliability, Variability, and Serviceability

The level of reliability and standard error for the project were 75% and 0.674 respectively.

The change in serviceability was 3.0, and the maximum allowable rutting for unbound pavement design was 2.0 inches.

Subgrade Support

SAECO collected soil samples from three locations at the site and used sieve and plasticity index testing to determine the correlated R-value. The design R-Value determined is 53.

The design R-Value was then used to determine the subgrade resilient modulus using the ADOT methodology and included a seasonal variation factor (SVF) to account for local climate conditions for Tucson, per ADOT the SVF of Tucson is 1.7. The design resilient modulus for the site is 24,828 psi.

Pavement Section Alternatives

The design structural number (SN) was calculated from the governing equation provided in the ADOT Preliminary Design Manual.

Unbound pavement was designed using the graphical methodology described in AASHTO Design of Pavement Structures.

Using a layered analysis with the following material layer coefficients (as prescribed in the Pima County Roadway Design Manual) we determined the Flexible pavement section below:

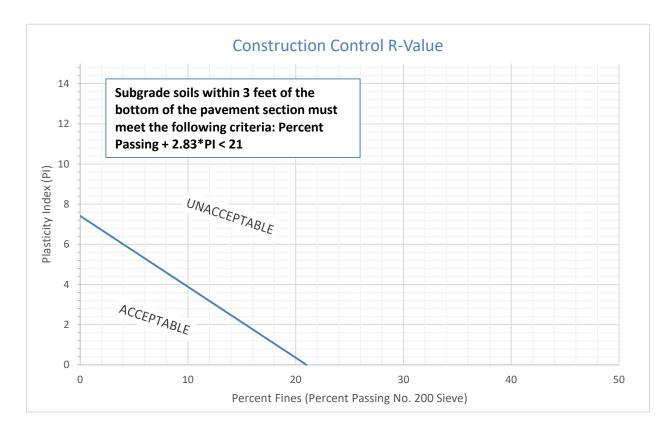
Material	Layer Coefficient	Drainage Coefficient	USC
Asphalt Concrete (AC)	0.44		
Aggregate Base Course (ABC)	0.12	0.92	

Alternative	Asphalt Concrete (inches)	Aggregate Base Course (inches)	Cement Treated Subgrade (inches)	Section SN	Total Section (inches)
А	2.0	4.0		1.29	6.0
В		10.0			10.0

The asphalt materials and mix design should conform to PAG 406. It is recommended that asphalt mix designation No. 2 or No. 3 be used for pavements. While the No. 2 mix has a somewhat rougher texture, it offers more stability. Pavement construction and lift thicknesses should be performed in accordance with applicable portions of PAG Section 406.

CONSTRUCTION RECOMMENDATIONS

The area covered by these recommendations should include a construction envelope that extends over the entire limits of the area to be paved.


- 1. We believe the existing section to be suitable for re-use, although no aggregate base was observed under the existing asphalt, as existing observed distresses can be attributed to exposure. Any cracks should be sealed and pavement surface sealcoated as a part of the reconditioning to ensure continued performance.
- 2. Any new areas of asphalt pavement should be constructed according to Alternative A above.
- 3. Areas where new pavement is to be constructed should be completely cleared of vegetation (including roots). Any debris and other deleterious materials should be excavated and disposed of off-site at a legal dumpsite. If any new fills are required, all areas should be observed by a representative of the geotechnical engineer for evidence of any remaining undesirable materials prior to placing new fills.
- 4. If unbound pavement is to be used for the construction of the new turnaround, raised on at-grade curbs should be constructed to constrain the pavement section.
- 5. Prepare the ground surface in pavement areas by scarifying the subgrade soils to a depth of 10 inches, moisture-conditioning, and compacting.
- Subgrade soils should be compacted to 95% of standard Proctor MDD, and aggregate base should be compacted to 100% of standard Proctor MDD. Recommended moisture content range is OMC -3% to OMC +3%
- 7. We recommend site grading be constructed to provide positive drainage off the pavement surface and prevent water from ponding.

MATERIALS

Subgrade Soils:

If needed, imported soils within 3 feet of the pavement surface should conform to the requirements of the following chart:

Aggregate Base Course

Aggregate base course should conform to PAG 303.

Asphalt Concrete

The asphalt concrete materials and mix design should conform to PAG 406. It is recommended that asphalt mix designation No. 2 or No. 3 be used for pavements. While the No. 2 mix has a somewhat rougher texture, it offers more stability. Pavement construction and lift thicknesses should be performed in accordance with applicable portions of PAG Section 406.

PAVEMENT DESIGN LIFE & MAINTENANCE CONSIDERATIONS

A 20-year design life was used for this pavement design, but the owner should recognize that routine maintenance, such as periodic crack sealing and surface treatments, will be required during this design

period. Even with regular maintenance major rehabilitation of the pavement surface will likely be required before 20 years due to climatic effects and normal deterioration from use. It is typical that most pavements will require substantial maintenance before reaching half of the analysis design life. The pavements will require periodic maintenance where proper drainage is provided and maintained, and seal coats, overlays, or patching are regularly applied. Should moisture penetrate to the subgrade soils or ponding occur on or adjacent to the pavement section, a significant reduction in pavement life could occur along with the need for increased maintenance; therefore, good surface drainage is essential to achieving the desired pavement life.

We recommend an initial fog seal be performed between 1 and 2 years after the completion of paving. The coating seals surface-voids and reduces the infiltration of air and water. Fog sealing should not be performed on asphalt less than 1 year after construction.

We also recommend the following maintenance activities be undertaken regularly to prolong the service life of the new pavement:

Maintenance Activity	Frequency	Comments
Fog Sealing	Every 3-5 Years	After initial fog seal
Crack Sealing	Every 2-3 Years	
Pavement Condition Assessment	Every 2-3 Years	To be performed by a qualified professional.

LIMITATIONS

Some variations in the soil and existing asphalt conditions are anticipated between the points explored. The nature and extent of variations may not be evident until construction occurs. If any conditions are encountered at this site that are different from those described in this report, our firm should be immediately notified so that we may make any necessary revisions to the recommendations contained in this report. In addition, if the scope of the proposed construction changes from that described in this report, our firm should also be notified.

The exploration, laboratory testing, and geotechnical analyses presented in this geotechnical report have been conducted in general accordance with current practice and the standard of care exercised by geotechnical consultants performing similar tasks in the project area. No warranty, expressed or implied, is made regarding the conclusions, recommendations, and opinions presented in this report.

This report may be used only by the client and only for the purposes stated within a reasonable time from its issuance, but in no event later than one year from the date of the report. Land or facility use, on and off-site conditions, regulations, or other factors may change over time, and additional work may be required with the passage of time. Similarly, future irrigation, broken water or sewer pipelines, or other

factors may adversely influence the project. Any party other than the client who wishes to use this report shall notify SAECO of such intended use. SAECO may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the client or anyone else will release SAECO from any liability resulting from the use of this report by any unauthorized party and client agrees to defend, indemnify, and hold harmless SAECO from any claim or liability associated with such unauthorized use or non-compliance.

We appreciate the opportunity to be of service to you during this phase of the project.

Sincerely,

SMITH & ANNALA ENGINEERING CO.

Aaron J. Spreiser, E.I.T. Staff Professional

Attachments: Exploration Map


Log of Borings
Lab Test Reports

Pavement Design Worksheets

Distribution: (1) Addressee (via e-mail)

See Professional English Control of the Standard Standard

Jonathan K. Alexander, P.E. Principal

www.saecosafe.com SMITH & ANNALA ENGINEERING CO. SAECO	KEY TO SYMBOLS
Client: <u>Dibble</u>	Project Name: Butterfield Elementary Fire Lane and ADA
Project Number: 29.25.2601	Project Location: Marana, Arizona
LITHOLOGIC SYMBOLS (Unified Soil Classification System)	SAMPLER SYMBOLS
ASPHALT: Asphalt	Bulk Sample
SM: USCS Silty Sand	Split-barrel ring-lined sampler, 2.4-inch I.D.
	WELL CONSTRUCTION SYMBOLS

ABBREVIATIONS

LL - LIQUID LIMIT (%)

Ы - PLASTIC INDEX (%)

W - MOISTURE CONTENT (%)

DD - DRY DENSITY (PCF) NP - NON PLASTIC

-200 - PERCENT PASSING NO. 200 SIEVE

PP - POCKET PENETROMETER (TSF)

TV - TORVANE

PID - PHOTOIONIZATION DETECTOR

UC - UNCONFINED COMPRESSION

ppm - PARTS PER MILLION

Water Level at Time

Drilling, or as Shown

Water Level at End of Drilling, or as Shown

Water Level After 24

Hours, or as Shown

KEY TO SOIL SYMBOLS AND TERMS

PAGE 1 OF 1

Client: Dibble Project Name: Butterfield Elementary Fire Lane and ADA

Project Location: Marana, Arizona Project Number: 29.25.2601

UNIFIED SOIL CLASSIFICATION (ASTM D-2487)

MATERIAL TYPES	CRITE	RIA FOR ASSIGNING SOIL GRO	DUP NAMES	GROUP SYMBOL	SOIL GROUP NAMES & LEG	END
	GRAVELS	CLEAN GRAVELS	C _u >= 4 AND 1 <= C _c <= 3	GW	WELL-GRADED GRAVEL	
l r	>50% OF COARSE	<5% FINES	C _u < 4 AND/OR 1 > C _c > 3	GP	POORLY-GRADED GRAVEL	000
SOILS D ON /E	FRACTION RETAINED ON NO 4. SIEVE	GRAVELS WITH FINES	FINES CLASSIFY AS ML OR CL	GM	SILTY GRAVEL	600
COARSE-GRAINED S' >50% RETAINED O NO. 200 SIEVE		>12% FINES	FINES CLASSIFY AS CL OR CH	GC	CLAYEY GRAVEL	
E-GR/ RET,	SANDS	CLEAN SANDS	C _u >= 6 AND 1 <= C _c <= 3	SW	WELL-GRADED SAND	
ARSE >50% NC	>50% OF COARSE	<5% FINES	C _u < 6 AND/OR 1 > C _c > 3	SP	POORLY-GRADED SAND	
8 ^	FRACTION PASSES ON NO 4. SIEVE	SANDS AND FINES	FINES CLASSIFY AS ML OR MH	SM	SILTY SAND	
		>12% FINES	FINES CLASSIFY AS CL OR CH	SC	CLAYEY SAND	
(0	SILTS AND CLAYS	INORGANIC	PI>7 AND PLOTS>"A" LINE	CL	LEAN CLAY	
SOILS ES VE	LIQUID LIMIT<50	INORGANIC	PI>4 AND PLOTS<"A" LINE	ML	SILT	
		ORGANIC	LL (oven dried)/LL (not dried)<0.75	OL	ORGANIC CLAY OR SILT	
E-GRAINED >50% PASS NO. 200 SIE	SILTS AND CLAYS	INIODOANIO	PI PLOTS >"A" LINE	СН	FAT CLAY	
FINE-C	LIQUID LIMIT>50	INORGANIC	PI PLOTS <"A" LINE	MH	ELASTIC SILT	
_ L		ORGANIC	LL (oven dried)/LL (not dried)<0.75	ОН	ORGANIC CLAY OR SILT	
HIGHLY C	RGANIC SOILS	PRIMARILY ORGANIC MATTER, DARK IN C	OLOR, AND ORGANIC ODOR	PT	PEAT	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>

PARTICLE SIZE DEFINITION FOR SANDS AND GRAVELS

SOIL FRACTION **GRAIN SIZE**

Cobbles 12 inches to 3 inches

12 inches +

Gravel

Boulders

3 inches to 3/4 inches Coarse

3/4 inches to #4 Sieve Fine

#4 to #10 Sieve Coarse #10 to #40 Sieve Medium Fine #40 to #200 Sieve

SAMPLE TYPES

SPT - Standard Penetration Test

RC - Rock Core, HQ3 Core Barrel

DCP - Dynamic Cone Penetrometer (Blows/1.75")

BULK - Bulk Sample

UD - Undisturbed Sample

RING - Ring-lined Sampler

OTHER TESTS OR COMMENTS

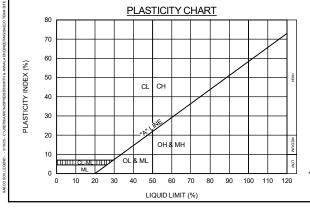
- pH OF SOIL (NR) - NO RECOVERY

CN - CONSOLIDATION RES - MINIMUM ELECTRICAL RESISTIVITY CHLOR - CHORIDE CONTENT

DS - DIRECT SHEAR SW - SWELL

SULF - SULFATE CONTENT UC - UNCONFINED COMPRESSION THRM - THERMAL RESISTIVITY

RV - R-VALUE HSA - HOLLOW STEM AUGER CBR - CALIFORNIA BEARING RATIO REC - SAMPLE RECOVERY (%) EI - EXPANSION INDEX - ROCK QUALITY DESIGNATION


PP - POCKET PENETROMETER (TSF)

CONSISTENCY / RELATIVE DENSITY DEFINITIONS

PENETRATION RESISTANCE (RECORDED AS BLOWS / FT)												
SAND & G	RAVEL		COHESIVE SOILS									
RELATIVE DENSITY	N-VALUE BLOWS/FOOT*	CONSISTENCY	N-VALUE BLOWS/FOOT*	UNCONFINED COMPRESSIVE STRENGTH (TSF) **								
VERY LOOSE	0 - 4	VERY SOFT	0 - 2	0 - 0.25								
LOOSE	4 - 10	SOFT	2 - 4	0.25 - 0.50								
MEDIUM DENSE	10 - 30	FIRM	4 - 8	0.50 - 1.0								
DENSE	30 - 50	STIFF	8 - 15	1.0 - 2.0								
VERY DENSE	OVER 50	VERY STIFF	15 - 30	2.0 - 4.0								
		HARD	OVER 30	OVER 4.0								

NUMBER OF BLOWS OF 140 LB HAMMER FALLING 30 INCHES TO DRIVE A 2 INCH O.D. (1-3/8 INCH I.D.) SPLIT-BARREL SAMPLER THE LAST 12 INCHES OF AN 18-INCH DRIVE (ASTM-1586 STANDARD PENETRATION TEST).

** VERY APPROXIMATE

NP NP

(7)

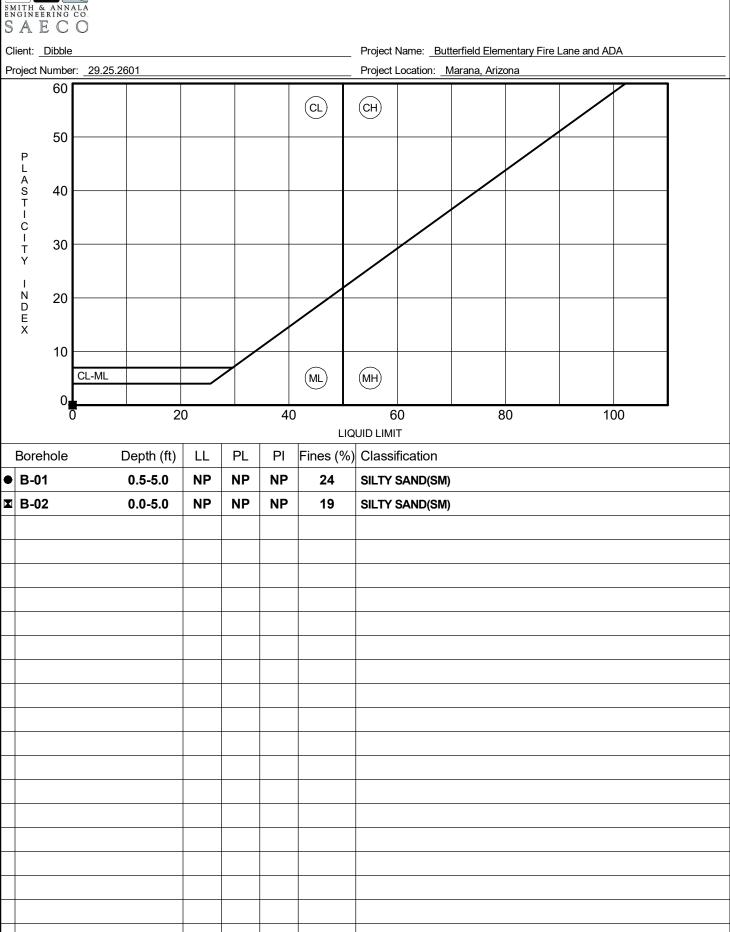
97

94 24

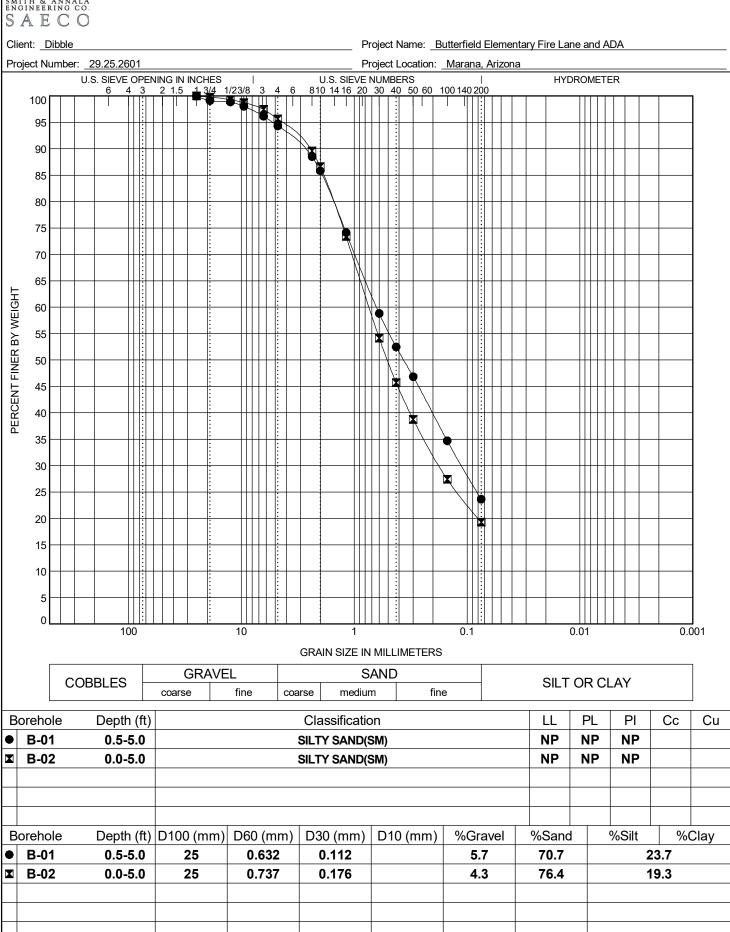
Bottom of borehole at 6.0 feet.

SILTY SAND, brown, moist, loose, non plastic

	c	
www.saecos	ate.com	


BORING NUMBER B-02

PAGE 1 OF 1


Client: <u>Dibb</u>	ole										Pr	oject N	lame:	Butterfield Elementary Fire Lane and ADA
Project Num	ber: _2	9.25	.2601								Pr	oject L	.ocatio	n: Marana, Arizona
Date Started	: 2/26/	25			C	omplet	ed: _2	2/26/2	25		Gr	ound	Elevati	on: Not Determined Hole Size: 8 inches
Drilling Conti	ractor:	Sol	uthland	ls							Gr	ound	Water	Levels:
Drilling Meth	od: <u>C</u> ľ	ИЕ-	55/Holl	ow Ste	m Aug	jer						At	time o	f Drilling: Not Encountered
Logged By:	AJS				C	hecked	By:	JKA				At	end o	Drilling: Not Encountered
Notes:												At	ter Dri	ling: Not Encountered
Elevation (ft) Depth (ft)	Bullnose Pen. (blows / ft)	Sample type/Interval	Blows per 6 in.	N-value (blows / ft)	Dry Unit Wt. (pcf)	Moisture Content (%)	Liquid Limit	Plasticity Index	Passing No. 4 Sieve (%)	Passing No. 200 Sieve (%)	Other Tests or Comments	Graphic Log	USCS Classification	MATERIAL DESCRIPTION
5	- - -						NP	NP	96	19			SM	SILTY SAND, brown, moist, loose, non plastic, no cementation Dark brown
		Щ	3 3	(6)	89	25								
l														Rottom of borehole at 6.0 feet

ATTERBERG LIMITS' RESULTS

GRAIN SIZE DISTRIBUTION

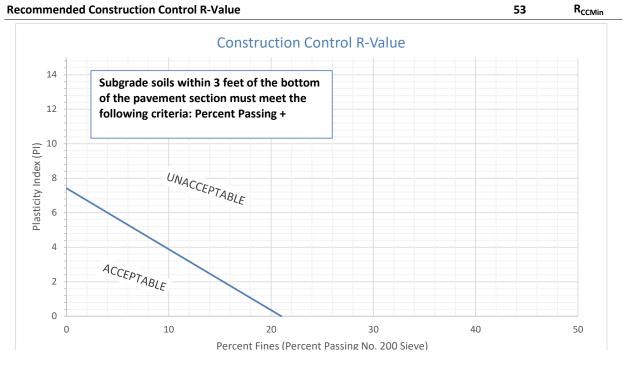
SUMMARY OF LABORATORY RESULTS

PAGE 1 OF 1

Client: Dibble Project Name: Butterfield Elementary Fire Lane and ADA

Project Number: 29.25.2601 Project Location: Marana, Arizona

1 10,000 110	<u></u>	-0.2001					_ 1.10,000	Location.	TVICITATIO, 7	u izoria			
Borehole	Depth (ft)	USCS Group Symbol	Liquid Limit	Plastic Limit	Plasticity Index	%>#4 Sieve	%<#200 Sieve	Water Content (%)	Dry Density (pcf)	Consol(-)/ Swell(+) (%)	pН	Minimum Resistivity (Ohm-cm)	Chloride (ppm)
B-01	0.5-5.0	SM	NP	NP	NP	6	24						
B-01	5.0-6.0	SM						4.1	96.8				
B-02	0.0-5.0	SM	NP	NP	NP	4	19						
B-02	5.0-6.0	SM						25.3	88.9				


E LANE AND AD AREPORT DOCUMEN 1929,25,2801,GPJ

LAB SUMMARY - GINT STD US LAB.GDT - 3/19/25 - C:\USBRS\AARONJSPREISER\

DESIGN R-VALUE CALCULATION

Laboratory Test Data

				R_t	R_c	R_c
Boring Dep	oth <u>No</u>	tes %pass#200	<u>PI</u>	(Tested)	(ADOT)	(PCDOT)
B-01 0.5	-5	24	0	65	72	51
B-02 0-	5	19	0		77	55
Note: DI Value of O :-	adiaataa Nan Dlaatia					
Note: Pl Value of 0 in	ndicates Non Plastic					
Note: PI Value of 0 in	ndicates Non Plastic		veic			
Note: Pl Value of 0 ir	ndicates Non Plastic	<u>Test Data Anal</u>		B	B	D
	ndicates Non Plastic	<u>Test Data Anal</u> %pass#200	<u>PI</u>	<u>R</u> t	<u>R</u> c 	<u>R</u> ,
Average	ndicates Non Plastic	<u>Test Data Anal</u> <u>%pass#200</u> 22	<u>PI</u> 0	65	75	53
Average Count	ndicates Non Plastic	<u>Test Data Anal</u> <u>%pass#200</u> 22 2	<u>PI</u> 0 2		75 2	53 2
Average	ndicates Non Plastic	<u>Test Data Anal</u> <u>%pass#200</u> 22 2 3.54	PI 0 2 0.00	65 1 	75 2 3.54	53 2 2.83
Average Count	ndicates Non Plastic	<u>Test Data Anal</u> <u>%pass#200</u> 22 2	<u>PI</u> 0 2	65 1	75 2	53 2
Average Count Standard Dev	ndicates Non Plastic	<u>Test Data Anal</u> <u>%pass#200</u> 22 2 3.54	PI 0 2 0.00	65 1 	75 2 3.54	53 2 2.83
Average Count Standard Dev Maximum		Test Data Anal %pass#200 22 2 3.54 24	PI 0 2 0.00 0	65 1 65	75 2 3.54 77	53 2 2.83 55
Average Count Standard Dev Maximum Minimum Adjusted Average (if	Standard Dev>10)	Test Data Anal %pass#200 22 2 3.54 24 19	PI 0 2 0.00 0 0	65 1 65 65	75 2 3.54 77 72	53 2 2.83 55 51
Average Count Standard Dev Maximum Minimum Adjusted Average (if	Standard Dev>10)	Test Data Anal %pass#200 22 2 3.54 24 19	PI 0 2 0.00 0 0	65 1 65 65	75 2 3.54 77 72	53 2 2.83 55 51
Average Count Standard Dev Maximum Minimum Adjusted Average (if	Standard Dev>10)	Test Data Anal %pass#200 22 2 3.54 24 19	PI 0 2 0.00 0 0	65 1 65 65	75 2 3.54 77 72	53 2 2.83 55 51
Average Count Standard Dev Maximum Minimum Adjusted Average (if	Standard Dev>10) gn R-Value (with PCI n Control R-Value	Test Data Anal %pass#200 22 2 3.54 24 19	PI 0 2 0.00 0 0	65 1 65 65	75 2 3.54 77 72 	53 2 2.83 55 51 R _{m(PCDOT)}

FLEXIBLE PAVEMENT DESIGN

Pavement Loading

				<u> </u>				
ESALs							100,000	W ₁₈
			Constructio	n Variability				
Level of Reli	ability						75%	
Standard No	ormal Deviate						-0.674	Z_R
Overall Stan	dard Deviation	1					0.45	S ₀
Initial Desig	n Serviceability	/ Index					4.5	P ₀
Terminal De	sign Serviceab	ility Index					1.5	P _t
Change in S	erviceability In	dex					3.0	∆psi
C	dans E		Site Co	<u>nditions</u>			4 =	0) (5
	riation Factor						1.7	SVF
Design R-Va							53	R _{m(SAECO)}
Resilient Mo	odulus (psi)						24,828	M _r
		D	avement Stru	icture Streng	th			
		<u>r</u>	avement stru	icture streng	Layer	Drainage	UCS	Elastic
					20,0.	2	0.00	2.000.0
					Coefficient	Coefficient	(PSI)	Modulus
Rubberized	Asphalt Concre	ete (RAC)			0.42			625,000
Asphalt Con	crete (AC)				0.42			625,000
	ase Course (Al				0.12	0.93		34,000
	ated Subgrade				0.18	1.00	300	300,000
Lime Treate	d Subgrade (LT	SB)			0.17	1.00	160	480,000
			Structura	l Number				
Calculated S	Structural Num	ber Subgrade					1.29	SN
	equired Struct							SN
Design Stru	ctural Number	r					1.12	SN _(design)
			vement Sect					
	RAC	AC	ABC	CTSB	LTSB	Ratio	Total	Section
<u>Alt.</u>	(inches)	(inches)	(inches)	<u>(inches)</u>	<u>(inches)</u>	<u>Check</u>	(inches)	<u>SN</u>
Α		2.0	4			n/a	6.0	1.29
В		0.0	10			n/a	10.0	1.12